Kac and new determinants for fractional superconformal algebras.

نویسندگان

  • Kakushadze
  • Tye
چکیده

We derive the Kac and new determinant formulae for an arbitrary (integer) level K fractional superconformal algebra using the BRST cohomology techniques developed in conformal field theory. In particular, we reproduce the Kac determinants for the Virasoro (K = 1) and superconformal (K = 2) algebras. For K ≥ 3 there always exist modules where the Kac determinant factorizes into a product of more fundamental new determinants. Using our results for general K, we sketch the non-unitarity proof for the SU(2) minimal series; as expected, the only unitary models are those already known from the coset construction. We apply the Kac determinant formulae for the spin-4/3 parafermion current algebra (i.e., the K = 4 fractional superconformal algebra) to the recently constructed three-dimensional flat Minkowski space-time representation of the spin-4/3 fractional superstring. We prove the no-ghost theorem for the space-time bosonic sector of this theory; that is, its physical spectrum is free of negative-norm states. 11.17.+y Typeset using REVTEX

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation Theory of Superconformal Algebras and the Kac-roan-wakimoto Conjecture

We study the representation theory of the superconformal algebra Wk(g, fθ) associated to a minimal gradation of g. Here, g is a simple finite-dimensional Lie superalgebra with a non-degenerate even supersymmetric invariant bilinear form. Thus, Wk(g, fθ) can be the Virasoro algebra, the Bershadsky-Polyakov algebra, the Neveu-Schwarz algebra, the BershadskyKnizhnik algebras, the N = 2 superconfor...

متن کامل

A New N = 4 Superconformal Algebra

It is shown that the previously known N = 3 and N = 4 superconformal algebras can be contracted consistently by singular scaling of some of the generators. For the later case, by a contraction which depends on the central term, we obtain a new N = 4 superconformal algebra which contains an SU(2)×U(1) Kac-Moody subalgebra and has nonzero central extension.

متن کامل

Construction of the K=8 Fractional Superconformal Algebras

We construct the K = 8 fractional superconformal algebras. There are two such extended Virasoro algebras, one of which was constructed earlier, involving a fractional spin (equivalently, conformal dimension) 5 current. The new algebra involves two additional fractional spin currents with spin 13 5 . Both algebras are nonlocal and satisfy non-abelian braiding relations. The construction of the a...

متن کامل

Ramond sector of superconformal algebras via quantum reduction

Quantum hamiltonian reduction of affine superalgebras is studied in the twisted case. The Ramond sector of “minimal” superconformal Walgebras is described in detail, the determinant formula is obtained. The paper generalizes the results of Kac and Wakimoto to the twisted case. Work partially supported by Minerva Foundation, Germany. Grant No. 8466.

متن کامل

Quantum Reduction for Affine Superalgebras

We extend the homological method of quantization of generalized Drinfeld–Sokolov reductions to affine superalgebras. This leads, in particular, to a unified representation theory of superconformal algebras. 1991 MSC: 17B65, 17B67, 81R1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. D, Particles and fields

دوره 49 8  شماره 

صفحات  -

تاریخ انتشار 1994